If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2-12y+3=0
a = 10; b = -12; c = +3;
Δ = b2-4ac
Δ = -122-4·10·3
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{6}}{2*10}=\frac{12-2\sqrt{6}}{20} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{6}}{2*10}=\frac{12+2\sqrt{6}}{20} $
| (2X+5)/6=x/16 | | 1x-0.06x=0.94 | | 4x+3x+11=2x+38 | | m/5+3.5=7.5 | | a+3=6+2a | | 7x-5x+3=19 | | -6(-5v+5)-9v=6(v-4)-3 | | 3a+4=2(a-2)-6 | | 8i+7=4i+27 | | 17-c=19 | | -16+7m=-4-5m | | 6(3-12=-12x | | 2÷3x=16 | | 12−2x=13x+45−4x | | -69-5v+5)-9v=6(v-4)-3 | | 4(3x+2)-2x=6(3x+2) | | 7x+3(2x-1)=10x-9 | | -(4x-5)=5 | | h-8=57 | | 2(6+6b)=108 | | -2/3+x/4=7/12 | | 6w-33=12(4w-5) | | 264.98+t=1,932.321 | | 3(x+2)=5x=4 | | 1/6(x-18)+1/2(x+2)=x+4 | | 22+1/3n=23 | | 2x+6+2=32 | | 20.y=300 | | 8y-y+3=40 | | 1.5(15b−7)=3b−9 | | 9z-4=4z+26 | | (4x+8)°+(6x+2)°=180° |